|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectweka.classifiers.Classifier
wGmdh.Msc
public class Msc
It will randomize the provided dataset
| Fields inherited from class weka.classifiers.Classifier |
|---|
m_Debug |
| Fields inherited from interface weka.core.Drawable |
|---|
BayesNet, NOT_DRAWABLE, TREE |
| Constructor Summary | |
|---|---|
Msc()
|
|
| Method Summary | |
|---|---|
void |
buildClassifier(weka.core.Instances instances)
|
double |
classifyInstance(weka.core.Instance instance)
Classifies the given test instance. |
java.lang.Object |
clone()
|
java.lang.String |
dataProviderTipText()
|
double[] |
distributionForInstance(weka.core.Instance instance)
|
void |
done()
|
protected TwoInputModel |
getBest(int layerIndex)
|
weka.core.Capabilities |
getCapabilities()
|
DatasetSupervised |
getDataProvider()
|
int |
getMaxLayers()
|
int |
getNumberOfLayers()
Attribute layer included in the count. |
java.lang.String[] |
getOptions()
Gets the current settings of our Classifier. |
long |
getRandomSeed()
|
java.lang.String |
getRevision()
Returns the revision string. |
NodeFilter |
getSelector()
|
Measure |
getStructureLearningPerformanceMeasure()
|
Measure |
getStructureValidationPerformanceMeasure()
|
weka.core.TechnicalInformation |
getTechnicalInformation()
|
boolean |
getVisualize()
|
java.lang.String |
globalInfo()
|
java.lang.String |
graph()
|
int |
graphType()
|
TwoInputModel |
handleOutput(weka.core.Instances instances)
|
void |
initClassifier(weka.core.Instances instances)
|
boolean |
isRelearn()
|
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options. |
java.lang.String |
maxLayersTipText()
|
void |
next(int nrIteration)
|
java.lang.String |
randomSeedTipText()
|
java.lang.String |
relearnTipText()
|
java.lang.String |
selectorTipText()
|
void |
setDataProvider(DatasetSupervised dataProvider)
|
void |
setMaxLayers(int nrLayers)
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options |
void |
setOutput(int layer,
weka.core.Instances insts)
Chooses the best model structure on layer, trains it on insts and prepares the classifier for evaluating it. |
void |
setRandomSeed(long randomSeed)
|
void |
setRelearn(boolean relearn)
|
void |
setSelector(NodeFilter selector)
|
void |
setStructureLearningPerformanceMeasure(Measure m)
|
void |
setStructureValidationPerformanceMeasure(Measure m)
|
void |
setVisualize(boolean visualizeNet)
|
java.lang.String |
structureLearningPerformanceMeasureTipText()
|
java.lang.String |
structureValidationPerformanceMeasureTipText()
|
java.lang.String |
toString()
|
java.lang.String |
visualizeTipText()
|
| Methods inherited from class weka.classifiers.Classifier |
|---|
debugTipText, forName, getDebug, makeCopies, makeCopy, runClassifier, setDebug |
| Methods inherited from class java.lang.Object |
|---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Field Detail |
|---|
public MultiSelectCombi gmdhNet
public MultiSelectCombi.ModelAndLayer currentlyBestStructure
public TwoInputModel modelToOutput
protected StructureLearningPerformance structureLearningPerformance
protected StructureValidationPerformance structureValidationPerformance
public int iterations
| Constructor Detail |
|---|
public Msc()
| Method Detail |
|---|
public void setStructureLearningPerformanceMeasure(Measure m)
public Measure getStructureLearningPerformanceMeasure()
public void setStructureValidationPerformanceMeasure(Measure m)
public Measure getStructureValidationPerformanceMeasure()
public int getNumberOfLayers()
protected TwoInputModel getBest(int layerIndex)
layerIndex -
public int getMaxLayers()
public void setMaxLayers(int nrLayers)
public boolean getVisualize()
public void setVisualize(boolean visualizeNet)
public void initClassifier(weka.core.Instances instances)
throws java.lang.Exception
initClassifier in interface weka.classifiers.IterativeClassifierjava.lang.Exception
public void next(int nrIteration)
throws ExpressionEqualToZero,
TooBig,
TooSmall
next in interface weka.classifiers.IterativeClassifierExpressionEqualToZero
TooBig
TooSmall
public void done()
throws java.lang.Exception
done in interface weka.classifiers.IterativeClassifierjava.lang.Exceptionpublic java.lang.Object clone()
clone in interface weka.classifiers.IterativeClassifierclone in class java.lang.Object
public void buildClassifier(weka.core.Instances instances)
throws java.lang.Exception
buildClassifier in class weka.classifiers.Classifierjava.lang.Exception
public TwoInputModel handleOutput(weka.core.Instances instances)
throws java.lang.Exception
java.lang.Exceptionpublic java.lang.String getRevision()
getRevision in interface weka.core.RevisionHandlerpublic weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.classifiers.Classifier
public double classifyInstance(weka.core.Instance instance)
throws java.lang.Exception
classifyInstance in class weka.classifiers.Classifierinstance - the instance to be classified
java.lang.Exception - if an error occurred during the prediction
public double[] distributionForInstance(weka.core.Instance instance)
throws java.lang.Exception
distributionForInstance in class weka.classifiers.Classifierjava.lang.Exceptionpublic java.lang.String globalInfo()
public java.util.Enumeration listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.Classifier
public void setOptions(java.lang.String[] options)
throws java.lang.Exception
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.Classifieroptions - the list of options as an array of strings
java.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.Classifierpublic java.lang.String structureLearningPerformanceMeasureTipText()
public java.lang.String structureValidationPerformanceMeasureTipText()
public java.lang.String maxLayersTipText()
public java.lang.String visualizeTipText()
public java.lang.String randomSeedTipText()
public java.lang.String relearnTipText()
public java.lang.String selectorTipText()
public java.lang.String dataProviderTipText()
public java.lang.String toString()
toString in class java.lang.Objectpublic int graphType()
graphType in interface weka.core.Drawable
public java.lang.String graph()
throws java.lang.Exception
graph in interface weka.core.Drawablejava.lang.Exceptionpublic weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandler
public void setOutput(int layer,
weka.core.Instances insts)
layer - public NodeFilter getSelector()
public void setSelector(NodeFilter selector)
selector - the selector to setpublic long getRandomSeed()
public void setRandomSeed(long randomSeed)
randomSeed - the randomSeed to setpublic DatasetSupervised getDataProvider()
public void setDataProvider(DatasetSupervised dataProvider)
dataProvider - the dataProvider to setpublic boolean isRelearn()
public void setRelearn(boolean relearn)
relearn - the relearn to set
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||