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Abstract 
 

The international standard for flowrate measurements ISO-5167 

recommends the temperature sensor to be located downstream of the 

differential device what may cause a significant error in the 

measurement of the flowrate of natural gas, especially at high 

differential pressure, low temperature and low diameter ratio. The 

flowrate generally needs to be compensated for the temperature 

change due to the Joule-Thomson effect caused by the constriction of 

the metering device. The accurate compensation involves double 

calculation of both the natural gas properties and the flowrate. To 

decrease the computational load, an automatic correction of the 

flowrate by the GMDH polynomial surrogate is proposed. By using 

the compound measure of the approximation error and the execution 

time for model selection, the modified GMDH algorithm searches for 

the satisfactory model fulfilling the constraints of real-time 

application. The automatic correction of the flowrate measurements 

of a natural gas is simulated and the corresponding results are 

discussed. The derived model can be equally used for a natural gas 

specified by composition or by physical properties. 

 

Keywords: Flowrate measurements, Real-time systems, Modeling, 
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1.   Introduction 

 

The international standard ISO-5167 [1] specifies the 

calculation of the flowrate by using the upstream temperature 

and upstream pressure of the fluid but it also suggests the 

temperature should be preferably measured downstream of the 

primary device. When positioning the temperature sensor 

downstream of the differential device, the measured flowrate 

of gaseous fluid generally needs to be compensated for the 

temperature change due to the Joule-Thomson (JT) effect 

caused by the constriction of the primary device. The 

measurement error may increase significantly, especially at 

high differential pressure, low temperature and at low 

diameter ratio [2]. 

Fig. 1 shows the schematic diagram of the natural gas 

flowrate measurement using an orifice plate with corner taps 

[3]. The temperature of the natural gas flowing through an 

orifice changes due to the JT effect. The procedure for the 

compensation of JT effect includes the calculation of 

thermodynamic properties of the natural gas [4]-[6], requiring 

a substantial computing power in order to be executable in 

real-time.  

The temperature change ∆T is defined by the following 

relation [1]: 

 

ωµ ∆⋅=−=∆ JTdu TTT , (1) 

 

where uT  and dT  denote the corresponding upstream and 

downstream temperature, JTµ  denotes the JT coefficient and 

∆ω is the pressure loss. The computation of the JT coefficient 

of the natural gas [2][5][6] is a time consuming procedure and 

generally includes the calculation of the corresponding density 

[7][8][9]. The approximate equation for pressure loss [10] 
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relates the pressure loss ∆ω to differential pressure ∆p, the 

discharge coefficient C and the ratio β=d/D between the 

internal diameters of the primary device (d) and the pipe (D). 

From Eqs. (1) and (2) it is obvious that the temperature drop 

∆T is directly proportional to the differential pressure ∆p. 
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Fig. 1. The schematic diagram of the natural gas flowrate measurement [3] 

using an orifice plate with corner taps 

 

The following section describes a computationally intensive 

procedure for the precise compensation of the flowrate error 

caused by the temperature change. We aim to build a low 

complexity GMDH model for the flowrate correction 

procedure and in this manner make the correction feasible in 

real-time in low-computing power systems. In Section 3 a 

brief description of the GMDH algorithm is given. Then the 

preparation of training and validation data (Section 4), 

followed by the elimination of insignificant parameters 

(Section 5) is given. Finally, the construction of the 
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corresponding GMDH surrogate is described in Section 6 and 

the results of the simulations of the flowrate measurements are 

presented in Section 7. 

 
Nomenclature 

Symbol Meaning Units 

C coefficient of discharge  

d diameter of orifice of primary device m 

D upstream internal pipe diameter m 

HS superior calorific value [gas at normal conditions (0 ºC, 

101325 bar), combustion temperature 25 ºC] 
MJ/m3 

K flowrate correction factor  

p absolute static pressure of the fluid MPa 

q mass flowrate kg/s 

T temperature K 

X mole fraction  

β diameter ratio β=d/D  

γ dynamic viscosity of a gas under working conditions  Pa·s 

∆p differential pressure MPa 

∆ω pressure loss MPa 

κ isentropic exponent  

µ Joule-Thomson coefficient K/MPa 

ρ density of the fluid kg/m3 

ρr relative density [gas at normal conditions (0 ºC, 

101325 bar)] 
 

Subscripts 

u upstream conditions 

d downstream conditions 

GMDH Approximation by GMDH 

 

2.   Flowrate correction procedure 

 

According to [1] and [3], the calculation of the natural gas 

flowrate depends on multiple parameters: 

 

( )dDpTPqq uuuuuu ,,,,,,, κγρ∆=  , (3) 

 

where qu, ρu, γu and κu represent the corresponding mass 

flowrate, density, viscosity and the isentropic exponent 

calculated at upstream pressure Pu and temperature Tu, while 

D and d denote the internal diameters of the pipe and the 

orifice, respectively. In case of the upstream pressure and the 

downstream temperature measurement, as suggested by [1], 

the flowrate equation, Eq. (3), changes to: 

 

( )dDpTPqq ddddud ,,,,,,, κγρ∆= , (4) 

 

where qd, ρd, γd and κd denote the corresponding mass 

flowrate, density, viscosity and the isentropic exponent 

calculated in “downstream conditions” i.e. at the upstream 

pressure pu and the downstream temperature Td. For certain 

natural gas compositions and operating conditions the flowrate 

qd may differ significantly from qu and the corresponding 

compensation for the temperature change may be necessary in 

order to preserve the requested measurement accuracy. 

The precise correction of the natural gas flowrate, based on 

the upstream pressure and the downstream temperature 

measurement, Eq. (4), and on the computation of the 

corresponding natural gas properties, is summarized in Table 

1. The procedure in Table 1 requires a double calculation of 

both the flowrate and the properties of the natural gas. To 

reduce the computational burden we aim to derive a low-

complexity flowrate correction factor model that will enable 

direct compensation of the flowrate error caused by the 

measurement of the downstream temperature. The correction 

factor model has to be simple enough in order to be executable 

in real-time and accurate enough to ensure acceptable 

measurement accuracy. 

 
Table 1 

Precise correction of the flowrate of the natural gas based on the downstream 

temperature measurement and on the computation of the natural gas properties 

 

Step Description 

1 Calculate the natural gas properties (ρd [7], µJT [6] and κd [6]) at pu, 

and Td 

2 Calculate the dynamic viscosity γd at Pu, and Td (e.g. by using the 

residual viscosity equation [11])  

3 Calculate the mass flowrate qd and the discharge coefficient C [3] at 

Pu, and Td  (Eq. (4)) 

4 Calculate the pressure loss ∆ω  (Eq. (2)) 

5 Calculate the upstream temperature Tu  in accordance with Eq. (1) 

6 Calculate the the natural gas properties (ρu [7] and κu [6]) at pu, and Tu 

7 Calculate the viscosity γu  at pu, and Tu (e.g. by using the residual 

viscosity equation [11]) 

8 Calculate the mass flowrate qu [3] at pu, and Tu  (Eq. (3)) 

 

The flowrate correction factor K can be obtained by 

dividing the true flowrate qu calculated in the upstream 

conditions, Eq. (3), by the flowrate qd calculated in the 

“downstream conditions”, Eq. (4): 

 

d

u

q

q
K = . (5) 

  

For the given correction factor (5), the flowrate at the 

upstream pressure and temperature can be calculated directly 

from the flowrate computed in the “downstream conditions”, 

i.e. du qKq ⋅= . Our objective is to derive the GMDH 

polynomial model of the flowrate correction factor. Given the 

GMDH surrogate (KGMDH) for the flowrate correction factor 

Eq. (5), the true flowrate qu can be approximated by: 

dGMDHGMDH qKq ⋅= , where qGMDH denotes the corrected 

flowrate. The following section contains a brief description of 

the GMDH algorithm and the compound error measure for the 

model selection. 

 

3.   GMDH algorithm 

 

Approximation of complex multidimensional systems by 

self-organizing polynomials, also known as the Group Method 

of Data Handling (GMDH), was introduced by A.G. 

Ivakhnenko [12]-[14]. The GMDH models are constructed by 

combining the low-order polynomials into multi layered 

polynomial networks. GMDH polynomials may achieve high 

approximation accuracy at low complexity and are simple to 

implement in digital computers. Fig. 2 illustrates a complete 
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2-layer feed-forward GMDH network representing a 3-

dimensional system, where pλ,i denotes a two-dimensional 

polynomial corresponding to the i
th

 node of the layer λ. 
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p2,0 p2,1 p2,2 p2,3 p2,4 p2,5 p2,6 p2,7 p2,8
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p1,0 p1,1 p1,2 

 
Fig. 2. Illustration of GMDH polynomials construction 

 

In our implementation of the GMDH algorithm a two-

dimensional second-order polynomial 
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is implemented, where zλi1 and zλi2 represent the input 

variables and aλi0,...,aλi5 are the corresponding coefficients 

obtained by the polynomial regression. Note that zλi1 and zλi2 

can be any combination of two different variables from the 

lower layers including the initial zero-layer variables (xi) and 

the derived regression polynomials (pλ,i). For example, the 

input variables for the polynomial p2,5 from Fig. 2 are the 

polynomial p1,0 from the 1
st
 layer and the initial variable x2. 

The GMDH algorithm assumes two independent data sets: a 

training set of M samples 

 
M

1i}),{( == titit yxD ,  (7) 

 

where each sample consists of a data vector 

( )
Ktitititi xxx ,...,,

21
=x , K

tix R∈ , and the corresponding 

dependent variable R∈tiy , as well a validation data set of N 

samples 

 
N

1i}),{( == viviv yxD , (8) 

 

where each sample consists of a data vector 

( )
Kvivivivi xxx ,...,,

21
=x , K

vix R∈ , with the corresponding 

dependent variable R∈viy . The algorithm uses the training 

data set, Eq. (7), to fit the coefficients of the regression 

polynomial and the validation set, Eq. (8), to verify the 

approximation error of the polynomial. The polynomials are 

then ranked according to the predefined performance measure. 

In order to calculate the regression coefficients, aλi0,...,aλi5, 

by polynomial regression, a set of 6 simultaneous linear 

equations 
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must be solved, where M is a total number of training samples, 

tmy  is the m
th

 sample value of the dependent variable from the 

training data set, Eq. (7), and ( )mtp i ,λ  is the value of the i
th

 

polynomial at layer λ corresponding to the m
th

 data vector 

from the training data set. In our implementation of the 

GMDH algorithm the above set of linear equations is solved 

by the Gauss elimination method using forward elimination, 

back substitution, and pivoting [15]. 

In order for it to be applicable to real-time measurement 

systems the surrogate model of the complex calculation 

procedure must satisfy the requirements regarding the 

accuracy and the execution time, the most critical parameters 

in real-time measurements. We define the following 

requirements: 

 

00 & exeexerrsrrs TTEE ≤≤  (10) 

 

where Errs and Texe denote the corresponding Root Relative 

Squared Error (RRSE) and the estimated Execution Time (ET) 

of the model while Errs0 and Texe0 represent their respective 

thresholds. 

When modeling the complex multidimensional system by 

using the GMDH algorithm the total number of possible 

models may increase immensely by increasing the number of 

layers and the exhaustive search becomes unfeasible. It is 

generally necessary to restrict the search area by limiting the 

maximum number of possible candidate models per layer. The 

proper selection of candidate models plays an important role 

in building the satisfactory GMDH model. The Root Mean 

Squared Error (RMSE) measure is commonly used for the 

selection of the best candidate models as it selects the models 

with the minimum approximation error. The RRSE is 

equivalent to RMSE measure because they are directly 

proportional. In our GMDH algorithm we employed the RRSE 

measure since the relative error is more frequently used for the 

characterization of the flow-computer accuracy than the 

absolute error. The RRSE measure is defined by: 
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where vip  denotes the approximation of the dependent 

variable viy , and ∑ =
=

N

i viv y
N

y
1

1  denotes the mean value of 

the dependent variable from the validation data set. 

A recent research [16] shows that the two-parameter 

measure, combining the RRSE and the ET, may discover more 

favorable models for real-time applications than the single 

error measure, since it optimizes the model with respect to 

both the approximation accuracy and the ET i.e. the 

complexity. The two-parameter Compound Error (CE) 

measure [16] is defined by: 
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( ) ( ) ( )2
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0 1 exeexewrrsrrswCE TTcEEcE ⋅−+⋅= , (12) 

 

where cw, ( 10 ≤≤ wc ) denotes the weighting coefficient. The 

CE measure Eq. (12) is searching for the model with 

minimum compound error having the RRSE and ET both 

below the corresponding thresholds Eq. (10). The CE measure 

Eq. (12) normalizes each parameter to the corresponding 

threshold and evaluates its contribution to the compound error. 

By varying the coefficient cw the contribution of each term 

changes. The GMDH algorithm with RRSE and CE measure 

is used to model the flowrate correction factor Eq, (5). The 

following section describes the preparation of training and 

validation samples for the correction factor modeling. 

 

4.   Preparation of training and validation data 

 

The density of the natural gas in industrial applications can 

be calculated by using the natural gas composition [7][9] or its 

physical properties [8][17][18]. Within the ranges of 

application for the pipeline quality gases, the ISO-12213-2 [7] 

(Table 2) and ISO-12213-3 [8] (Table 3) produce identical 

results for the compression factor Z and the density ρ  within 

the 5 most significant digits. 

The ranges of application of input parameters for the 

flowrate measurement based on orifice plates [3] are shown in 

Table 4. In addition to Table 4, some extra limitations 

regarding the ranges of application of intermediate parameters 

like the Reynolds number and the diameter ratio must also be 

satisfied [3]. Our idea is to derive the GMDH polynomial  

 
Table  2 

ISO-12213-2 input parameters with the ranges of application for pipeline 

quality gas 

 

Index Parameter description Range of application 

0 nitrogen 0 ≤ XN2 ≤ 0.20 

1 carbon dioxide 0 ≤ XCO2 ≤ 0.20 

2 methane 0 ≤ XCH4 ≤ 1.00 

3 ethane 0 ≤ XC2H6 ≤ 0.10 

4 propane 0 ≤ XC3H8 ≤ 0.035 

5 n-butane 

6 iso-butane 

n-butane+iso-butane 

0 ≤ XC4H10 ≤ 0.015 

7 n-pentane 

8 iso-pentane 

n-pentane+iso-pentane 

0 ≤ XC5H12 ≤ 0.005 

9 n-hexane 0 ≤ XC6H14 ≤ 0.001 

10 n-heptane 0 ≤ XC7H16 ≤ 0.0005 

11 n-octane 

12 n-nonane 

13 n-decane 

n-octane+n-nonane+n-decane 

0 ≤ XC8H18+ XC9H20+ XC10H22 ≤ 

0.0005 

14 hydrogen 0 ≤ XH2 ≤ 0.10 

15 carbon monoxide 0 ≤ XCO ≤ 0.03 

16 water 0 ≤ XH2O ≤ 0.00015 

17 helium 0 ≤ XHe ≤ 0.005 

18 oxygen 0 ≤ XO2 ≤ 0.0002 

19 hydrogen sulfide 0 ≤ XH2S ≤ 0.0002 
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21 Absolute pressure in MPa 0 < p ≤ 12 

22 Temperature in K 263 ≤ T ≤ 368 

 

Table  3 

ISO-12213-3 input parameters with the ranges of application for pipeline 

quality gas 

 
Index Parameter description Range of application 

0 XCO2 - mole fraction of carbon dioxide 0 ≤ XCO2 ≤ 0.20 

1 XH2 - mole fraction of hydrogen 0 ≤ XH2 ≤ 0.10 

2 p - absolute pressure in MPa 0 < p ≤ 12 

3 T - temperature in K 263 ≤ T ≤ 368 

4 ρr - relative density 0.55 ≤ d ≤ 0.80 

5 HS - superior calorific value in MJ/m3 30 ≤ HS ≤ 45 

 

Table  4 

Ranges of application of input parameters for fluid flowrate measurements 

based on orifice plates with corner taps [3] 

 

Index Parameter description Range of application 

0 ρ - density in kg/m3 not specified 

1 γ - viscosity in Pa⋅s not specified 

2 κ - isentropic exponent not specified 

3 p - absolute pressure in MPa not specified 

4 T - temperature in K not specified 

5 ∆p - differential pressure in MPa 0 ≤ ∆p ≤ 0.25p 

6 D - pipe diameter in mm 50 ≤ D ≤ 1000 

7 d - orifice diameter in mm 12.5 ≤ d ≤ 750 

8 β - diameter ratio 0.1 ≤ β ≤ 0.75 

 

model of the correction factor Eq. (5) that could be used for 

the correction of the flowrate regardless of the procedure used 

for the calculation of the natural gas properties, [7] or [8]. In 

order to make it applicable for the natural gas specified by 

either [7] or [8] we need to select the representative 

parameters common to both procedures. Given that ISO-

12213-2 and ISO-12213-3 procedures are equivalent within 

the specified operating conditions and since the ISO-12213-2 

input parameters (Table 2) can be easily converted into the 

ISO-12213-3 input parameters (Table 3), the ISO-12213-3 

input parameters can be thought of as representative for both 

procedures. In addition to ISO-12213-3 parameters, the 

parameters (Table 4)  
 

Table  5 

Complete set of input parameters for the calculation of natural gas flowrate 

 

Index Parameter description Range of application 

0 XCO2 - mole fraction of carbon dioxide 0 ≤ XCO2 ≤ 0.20 

1 XH2 - mole fraction of hydrogen 0 ≤ XH2 ≤ 0.10 

2 p - absolute pressure in MPa 0 < p ≤ 12 

3 T - temperature in K 263 ≤ T ≤ 368 

4 ρr - relative density 0.55 ≤ ρr ≤ 0.80 

5 HS - superior calorific value in MJ/m3 30 ≤ HS ≤ 45 

6 ρ - density in kg/m3 unspecified 

7 γ - viscosity in Pa⋅s unspecified 

8 κ - isentropic exponent unspecified 

9 ∆p - differential pressure in MPa 0 ≤ ∆p ≤ 0.25p ≤ 0.2 

10 D - pipe diameter in mm 50 ≤ D ≤ 1000 

11 d - orifice diameter in mm 12.5 ≤ d ≤ 750 

12 β - orifice to pipe diameter ratio: d/D 0.1 ≤ β ≤ 0.75 

 

representing the ISO-5167-2 flowrate calculation procedure 

[3], need to be included. Hence, the complete set of input 
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parameters for the calculation of the flowrate is constructed 

from the parameters given in Table 3 and Table 4 and is 

shown in Table 5. 
 

Table 6 

Procedure for generation of training and validation data samples used for 

flowrate correction factor modeling  

 

Step Description 

1 Set data sample counter 

2 Generate randomly the parameters from Table 2 by satisfying the 

corresponding ranges of application 

3 Use the procedure specified in [19] to calculate relative density (ρr ) 

and the superior calorific value (HS) at normal conditions 

4 If (relative density (ρr ) or the superior calorific value (HS) out of 

range (Table 5)) Then go to Step 2 

Else proceed 

5 Generate randomly ∆p, D and d by satisfying the corresponding 

ranges of application (Table 5) 

6 Use the procedure specified in Table 1 to calculate the density (ρ), 

the viscosity (γ), the isentropic exponent (κ), the uncorrected (qd) 

and the true (qu) mass flowrate 

7 Using Eq. (5) calculate the flowrate correction factor K 

8 Save data sample: 

(XCO2, XH2, p, T, ρr, HS, ρ, γ, κ, ∆p, D, d, β; K) 

and decrement data sample counter 

9 If (data sample counter equals zero) Then Exit 

Else go to Step 2 

 

Note that we limited the maximum possible value of the 

differential pressure ∆p to 0.2 MPa (Table 5). In order to 

facilitate the modeling of the correction factor, Eq. (5), we 

have randomly generated the training, Eq. (7), and the 

validation, Eq. (8), data set. The corresponding high accuracy 

procedure, involving the double calculation of the flowrate 

and the physical properties, is summarized in Table 6. 

In the following step we will try to reduce the total number 

of necessary parameters by minimizing the effect of parameter 

removal on the accuracy of the correction factor model.  

Finally we aim to build the polynomial model of the 

correction factor by satisfying some predefined complexity 

and accuracy thresholds Eq. (12). 

 

5.   Elimination of insignificant parameters 

 

The procedure for the removal of the least significant input 

parameters begins with the complete set of parameters (Table 

5) by searching for the parameter, whose elimination results in 

the minimum RRSE of the corresponding best polynomial 

model obtained at the predefined layer and removes the 

parameter if the corresponding RRSE remains below the given 

error threshold. The procedure ends if none of the remaining 

parameters can be removed without causing the corresponding 

best model RRSE to exceed the predefined error threshold. 

Fig. 3 illustrates in log10 scale the average RRSE of the best 

10 polynomial models obtained after the elimination of the 

corresponding parameter from the initial set of 13 parameters 

(Table 5). Fig. 3 shows that the pipe diameter Pd has the 

lowest and the differential pressure Dp the highest impact on 

the RRSE of all 13 input parameters. 
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Fig. 3. Illustration of the effect of parameter removal on the RRSE of the 

corresponding best polynomial model. The corresponding RRSE is obtained 

after the elimination of each single parameter from the initial set of input 

parameters (Table 5). The best polynomials are all obtained at layer 15 by 

using GMDH algorithm with the RRSE selection criterion (11) and by 

retaining the best 50 models per each layer. 

 

Fig. 4 shows the average compound error ECE, Eq. (12), in 

log10 scale for the best 10 models obtained at layer 15 against 

the total number of the most significant parameters used for 

their generation. For example, the average ECE for XCO2 

corresponds to the models obtained by using all 5 leftmost 

parameters, i.e. ∆p, β, HS, T and XCO2. The RRSE threshold 

equals 3%, the corresponding ET threshold is 200 ms, the 

average execution time of the basic GMDH polynomial, Eq. 

(6), equals 1 ms, the total number of models per layer is 50 

and the maximum total number of layers is 15. The results are 

obtained by using the CE measure with the weighting 

coefficient cw=0.5. 
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Fig. 4. Average CE (Eq. 12) for the 10 best models obtained at layer 15 

against the total number of the most significant parameters used for their 

generation.  

 

From Fig. 4 it can be seen that the best models (minimum 

ECE) have been obtained by using the 9 most representative 

parameters from Table 5 (see Fig. 3), i.e. ∆p, β, HS, T, XCO2, 

P, XH2, ρ and ρr. It is also evident from Fig. 4 that the 

remaining least significant input parameters do not produce 

further decrease of compound error (ECE) of the model. 

Almost identical outline has been obtained for the average 

RRSE of the best models. The optimal input parameters with 

the corresponding ranges of application are shown in Table 7. 
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Table  7 

Optimal input parameters for the natural gas flowrate correction factor 

modeling 

 

Index Parameter description Range of application 
0 XCO2 - mole fraction of carbon dioxide 0 ≤ XCO2 ≤ 0.20 

1 XH2 - mole fraction of hydrogen 0 ≤ XH2 ≤ 0.10 

2 p - absolute pressure in MPa 0 < p ≤ 12 

3 T - temperature in K 263 ≤ T ≤ 368 

4 ∆p - differential pressure in MPa 0 ≤ ∆p ≤ 0.25p 

5 ρ - density in kg/m3 unspecified 

6 ρr - relative density 9.55 ≤ ρr ≤ 0.80 

7 HS - superior calorific value in MJ/m3 30 ≤ HS ≤ 45 

8 β - orifice to pipe diameter ratio: d/D 0.1 ≤ β ≤ 0.75 

 

The GMDH model of the flowrate correction factor, Eq. (5), 

relates the correction factor to the “downstream conditions” 

(pu and Td) and can be written in the following form: 

 

),,,,,,,,( 22
βρρ SrdduHCOGMDHGMDH HpTpxxKK ∆= . (13) 

 

The limits of use of the GMDH correction factor are given in 

Table 7. The valid ranges of the Reynolds number are defined 

in [3] and for the orifice plates with corner taps are: ReD≥5000 

for 0.1≤β≤0.56 and ReD≥16000·β
2
 for β>0.56.  

 

 

6.   Flowrate correction factor modeling 
 

The GMDH model of JT coefficient [16] enables an indirect 

compensation of a temperature drop and the corresponding 

flowrate error. The flowrate correction procedure [16] 

involves a double calculation of the flowrate of the natural 

gas. First, the flowrate is calculated using the “downstream 

conditions”, than the JT coefficient is computed using its 

GMDH model, followed by the estimation of the temperature 

drop Eq. (1) and finally the corrected upstream temperature is 

used to calculate the flowrate precisely. In this paper we aim 
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Fig. 5. Illustration of the GMDH algorithm approaching the error thresholds, 

Eq. (10), for the flowrate correction factor K by using the CE criterion, Eq. 

(12), with the weighting coefficient cw=0.5. The RRSE (solid lines) and the 

ET (dotted lines) for the best 20 models at each layer are normalized to their 

respective thresholds. The algorithm uses the training and the validation data 

set each consisting of 20000 samples. The maximum number of qualified 

polynomials per layer is set to Pλ=50 for each layer λ=1,...,15, the average ET 

of the basic GMDH polynomial is set to 1 ms, and the thresholds, Eq. (10), 

are set to Errs0=4.0% and Texe0=50ms. The RRSE for at least one model at 

layer 15 drops below the threshold before the corresponding ET exceeds it 

and the algorithm finds the satisfactory model. 

 

to derive a GMDH surrogate of a complex correction 

procedure (Table 1) in order to reduce the complete procedure 

to a single multiplication between the flowrate, measured in 

the “downstream conditions”, and the GMDH substitute of the 

correction factor Eq. (13). The precise compensation 

procedure (Table 1) will be translated into the GMDH 

surrogate by using two-parameter measure, Eq. (12), for 

model selection. Using GMDH algorithm [16] different 

models can be obtained by varying the total number of the 

most favorable candidate models that are retained per layer 

and the error thresholds for RRSE and ET of the model. The 

GMDH model of the flowrate correction factor will be tailored 

for the FC prototype based on low-power 8-bit/16-MHz MPU 

(Z84C15) with no hardware support for floating-point (FP) 

operations. The embedded FP package enables the calculation 

of the basic GMDH polynomial, Eq. (1), in approximately 1 

ms on average. The calculation of both, the flowrate and the 

properties of the natural gas with fixed composition, takes up 

to 870 ms in our FC prototype. In order to ensure the 

completion of the flowrate calculation and the corresponding 

correction safely within the 1000 ms measurement cycle we 

limited the ET of the flowrate correction to 50 ms. When 

generating the GMDH model, the RRSE threshold of the 

flowrate correction factor will be decreased as long as it 

provides the generation of at least one model satisfying the ET 

threshold. By setting the ET threshold to 50 ms, the maximum 

number of layers to 15 and by varying other parameters of the 

GMDH algorithm we were able to create the satisfactory 

models of the flowrate correction factor with the RRSE below 

4.0 %. 
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Fig. 6. Illustration of the GMDH algorithm with RRSE measure, Eq. (11), 

failing to find the satisfactory model for the flowrate correction factor Kq. The 

RRSE (solid lines) and ET (dotted lines) for the best 20 models at each layer 

are normalized to their respective thresholds. The algorithm uses the training 

and the validation data set each consisting of 20000 samples. The maximum 

number of qualified polynomials per layer is set to Pλ=50 for each layer, 

λ=1,...,15, the average ET of the basic GMDH polynomial is set to 1 ms, and 

the thresholds, Eq. (10),  are set to Errs0=4.0% and Texe0=50ms. The ET lines of 

all models exceeded the threshold before any of the RRSE line dropped below 

it and the algorithm failed to find an acceptable model. 

 

Fig. 5 illustrates how the CE measure, Eq. (12), forces the 

algorithm to decrease the RRSE of the model by controlling 

the increase of its ET. Fig. 5 shows that the RRSE of at least 

one model (solid lines) drops below the threshold (normalized 

error = 1) before any of the ET (dotted lines) exceeds it and 

the algorithm finds the satisfactory model at layer 15. We 

varied the weighting coefficient cw in Eq. (12) in the range 
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L=15, D=0, Ecomp=7.657E-1, Ermsq=2.290E-5, Emax=-0.0003, Errs=3.967%, Era=3.549%, Texe=37.000ms
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Fig. 7. Polynomial graph of the best GMDH surrogate model of the flowrate 

correction factor K, obtained at layer 15 by using the CE measure Eq. (12) 

with weighting coefficient cw=0.5 and with the threshold levels, Eq. (10), set 

to Errs0=4.0% and Texe0=50ms. The maximum number of qualified polynomials 

is set to Pλ=50 for each layer λ=1,...,15. The training and the validation data 

sets consist of 20000 random samples each. The obtained GMDH model 

satisfies the given thresholds (Errs=3.967 % and Texe=37 ms) and is suitable for 

implementation in FC software. 

 

Table 8 

GMDH polynomial model of the correction factor in recursive form with the 

corresponding coefficients of the second order two-dimensional polynomials 

 

GMDH polynomial model in recursive form 

y=P31(P30(P28(P27(P26(P25(P20(P19(P18(P17(P11(P8(P6(P2(P0(x4,x8),P1(x2,x3)),P5(P

3(x3,x4),P4(x6,x7))),P7(x0,x7)),P10(P9(x0,x4),P1(x2,x3))),P16(P15(P13(P0(x4,x8),P12

(x3,x6)),P14(x2,x5)),x7)),P14(x2,x5)),x1),x3),P24(P22(P21(x3,x8),x4),P23(x5,x6))),x6),

P14(x2,x5)),x5),P29(P1(x2,x3),x4)),x3) 

Basic regression polynomial 

Pi(zj,zk)=a0(i)+a1(i) zj+a2(i)zk+a3(i) zjzj+a4(i) zkzk+a5(i)zjzk 

Coefficients of the polynomials P0 to P31 

i a0 a1 a2 a3 a4 a5 

0 1.0001E+0 -1.1357E-2 -6.8704E-4 2.5536E-4 8.0474E-4 8.4350E-3 

1 9.8856E-1 -3.3090E-4 6.7325E-5 7.0360E-6 -1.0142E-7 7.3114E-7 

2 -8.1858E+2 7.4253E+2 8.9596E+2 5.0943E+1 -2.5870E+1 -8.4398E+2 

3 9.9012E-1 6.6260E-5 -4.1345E-2 -1.1050E-7 -2.7501E-5 1.1208E-4 

4 1.0005E+0 5.2566E-3 -1.0140E-4 -5.5278E-3 9.3191E-7 4.1835E-6 

5 -4.9380E+1 -3.2481E+1 1.3133E+2 -1.5787E+1 -9.7756E+1 6.5075E+1 

6 -1.6081E+2 2.4385E+2 7.9023E+1 -1.7140E+1 6.5044E+1 -2.0896E+2 

7 9.9774E-1 7.4210E-3 1.0690E-4 -6.6765E-3 -1.7098E-6 -2.4801E-4 

8 -1.2395E+3 1.2696E+3 1.2113E+3 -3.1377E+1 -2.2670E+0 -1.2068E+3 

9 9.9999E-1 8.5310E-4 -7.3055E-3 -7.3184E-3 4.8341E-4 -1.1245E-2 

10 -4.3539E+2 1.2580E+3 -3.8654E+2 -1.0374E+2 7.1916E+2 -1.0505E+3 

11 6.0579E+1 -8.4832E+1 -3.5432E+1 7.7879E+1 5.2456E+1 -6.9650E+1 

12 9.8649E-1 6.4671E-5 5.4189E-3 -1.0113E-7 -7.4088E-3 1.0893E-5 

13 -2.5121E+2 8.1232E+2 -3.0962E+2 4.1247E+1 6.0267E+2 -8.9441E+2 

14 9.9954E-1 3.3668E-4 -5.4531E-5 -1.9968E-5 -2.5227E-9 3.5061E-6 

15 -2.7176E+2 3.6409E+2 1.8065E+2 1.0868E+1 1.0229E+2 -3.8514E+2 

16 -6.1959E+1 1.2610E+2 -2.8801E-2 -6.3142E+1 5.4548E-7 2.8761E-2 

17 -3.0692E-1 1.6415E+1 -1.4806E+1 -1.8346E+1 -2.8921E+0 2.0936E+1 

18 -1.8777E+2 1.1482E+2 2.6201E+2 6.4193E+1 -9.9645E+0 -2.4228E+2 

19 -7.8929E+0 1.6780E+1 1.0244E+0 -7.8875E+0 5.9509E-3 -1.0252E+0 

20 1.6250E+0 -2.4087E+0 5.0903E-4 1.7861E+0 2.4507E-8 -5.2458E-4 

21 9.8493E-1 7.8212E-5 3.7369E-3 -1.0339E-7 8.8817E-4 -1.2276E-5 

22 -8.8257E+1 1.7868E+2 -1.0451E+1 -8.9419E+1 -2.5096E-4 1.0451E+1 

23 9.9690E-1 -3.3893E-6 8.3911E-3 -3.1845E-9 -6.8053E-3 -8.7023E-7 

24 -8.0245E+2 6.4401E+2 9.6266E+2 2.1901E+1 -1.3782E+2 -6.8731E+2 

25 2.0536E+1 1.4721E+2 -1.8732E+2 -1.2442E+2 4.2649E+1 1.0234E+2 

26 -1.1994E+1 2.4927E+1 1.3707E-1 -1.1932E+1 7.7668E-4 -1.3829E-1 

27 -3.3928E+1 -4.8502E+1 1.1742E+2 -2.0110E+1 -1.0364E+2 8.9758E+1 

28 3.3045E+0 -5.6009E+0 -2.2026E-4 3.2964E+0 6.1967E-9 2.1961E-4 

29 5.6656E+1 -1.1139E+2 -9.6569E+0 5.5730E+1 8.1188E-4 9.6565E+0 

30 7.6042E+0 8.0651E+0 -2.2283E+1 1.6229E+0 1.6282E+1 -1.0291E+1 

31 1.0721E+1 -2.0678E+1 7.3476E-4 1.0958E+1 8.2460E-9 -7.4024E-4 

 
 

from 0 to 1 in 0.1 steps and the best models have been 

obtained for equally balanced error terms, i.e. for cw=0.5. 

Fig. 6 demonstrates how the RRSE measure, Eq. (11), fails 

to find a satisfactory model by forcing the algorithm to 

minimize the RRSE only, while leaving the increase of the ET 

uncontrolled. The identical results can be obtained when using 

the CE measure, Eq. (12), with cw=1. Figs. 5 and 6 illustrate 

the general patterns of model search using CE measure, Eq. 

(12), and RRSE measure, Eq. (11), respectively. 

Fig. 7 illustrates a polynomial graph of the best GMDH 

surrogate model of the flowrate correction factor obtained at 

layer 15 when using the CE measure, Eq. (12). The RRSE  

(Errs=3.967%) and the ET (Texe=37 ms) of the model are both 

below the given thresholds (Errs0=4.0% and Texe0=50 ms) 

making the model suitable for implementation in our FC 

prototype. The CE measure proves to be very efficient in 

tailoring the model for real time systems since it optimizes the 

model with respect to the approximation error and the 

complexity.  

The recursive equation of the flowrate correction factor 

model (Fig. 7) with the corresponding coefficients of the basic 

polynomials, truncated to 5 most significant decimal digits, 

are shown in Table 8, where x0,...,x8 denote the input 

parameters shown in Table 7.  

When using the RRSE instead of CE measure under the 

same conditions, the RRSE error (Errs=3.915 %) of the best 

model obtained at layer 15 falls below the threshold but the 

corresponding ET (Texe=197 ms) exceeds the given threshold 

significantly making the model too complex and therefore 

unsuitable for implementation in the FC prototype. 

 

7.   Results and discussion 
 

In this section, the applicability of the obtained GMDH 

model for the compensation of JT effect in real-time flowrate 

measurements is verified. The accuracy and the precision of 

the derived model was tested on 10 randomly generated 

validation data sets, each consisting of 20000 samples, and the 

summary of the results is shown in Table 9. Thus, from Table 

9 it can be seen that the standard deviation equals 

approximately 1% of the corresponding average value of 

RMSE and RRSE and we may conclude that the derived 

correction factor approximates the correction procedure 

consistently in the entire range of application. 

Fig. 8 illustrates the results of the simulation of a relative 

error ( ) uud qqqE −=  in the measurement of the natural gas 

flowrate when ignoring the effect of the temperature drop due 

to the JT expansion (qd), instead of its precise correction (qu) 

in accordance with the procedure outlined in Table 1. The 

calculation of the flowrate is simulated by assuming the 

square-edged orifice plate with corner taps [3], with orifice 

diameter of 20 mm, the pipe diameter of 200 mm, the 

differential pressure of 0.2 MPa, and with the downstream 

measurement of the temperature. The error corresponds to the 

natural gas with the following mole fractions: 

nitrogen=0.009617, carbon dioxide=0.015021, 

methane=0.959284, ethane=0.084563, propane=0.023022, n-
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butane=0.006985, n-pentane=0.001218, n-hexane=0.000228, 

n-heptane=0.000057 and n-octane=0.000005). The natural gas  
 

Table 9 

Errors in the calculated correction coefficient when approximating the precise 

procedure (Table 1) by the best GMDH polynomial model (Fig. 7 and Table 

8) obtained at layer 15 by using the CE criterion Eq. (12) 

 

Validation set index Erms x10-5 Errs [%] 

1 2.305 4.007 

2 2.267 3.939 

3 2.258 3.933 

4 2.225 3.910 

5 2.270 3.922 

6 2.303 3.999 

7 2.295 3.969 

8 2.273 3.968 

9 2.277 3.922 

10 2.280 3.966 

Mean value: ∑=
N

ix
N

x
1

1
 

2.275 3.954 

Standard deviation: 

( )
( )1

1

2

1

2

−

−
=

∑ ∑
NN

xxN
N N

ii
σ  

0.02356 0.03341 

 

is taken from Table G.1 in [6] and corresponds to the gas 

mixture denoted by the ‘Gas 3’, which produces the largest 

temperature changes of all six mixtures given in [6] for 

validation purposes. The pressure varies from 1 MPa to 12 

MPa in 0.5 MPa steps and the temperature from 263 K to 333 

K in 10 K steps. From Fig. 8 it can be seen that the relative 

error approaches 0.6 % for the temperatures close to 263 K 

and for the pressures close to 8.5 MPa. The relative flowrate 

errors obtained for the remaining gas mixtures given in Table 

G.1 [6] are considerably lower.  
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Fig. 8. Illustration of a relative error in the measurement of a natural gas 

flowrate by orifice plate with corner taps when ignoring the temperature drop 

due to the JT expansion effect. 

 

Fig. 9 shows the correction factor, Eq. (5), for the precise 

compensation of the flowrate error shown in Fig. 8.  The 

natural gas density slightly increases when decreasing the 

temperature and if not corrected the measured flowrate will be 

correspondingly higher than the actual flowrate resulting in 

positive flowrate error (Fig. 8). Consequently, the 

corresponding correction factor is close to but always less than 

one (Fig. 9). 
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Fig. 9. Flowrate correction factor for the compensation of the flowrate error 

shown in Fig. 8. 

 

Fig. 10 illustrates the relative flowrate error 

( ) uudGMDHGMDH qqqKE −⋅=  when compensating the 

temperature drop effect by the GMDH correction polynomial, 

Table 8, instead of its precise correction by the correction 

factor shown in Fig. 9 and calculated in accordance with the 

procedure outlined in Table 1. The results are obtained by 

simulating the flowrate through the square-edged orifice plate 

with corner taps [3], with orifice diameter of 20 mm, the pipe 

diameter of 200 mm, the differential pressure of 0.2 MPa, and 

with the downstream measurement of the temperature. Again, 

the natural gas is taken from Table G.1 in [6] and corresponds 

to the gas mixture denoted by ‘Gas 3’. The pressure varies 

from 1 MPa to 12 MPa in 0.5 MPa increments and the 

temperature from 263 K to 333 K in 10 K increments. 
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Fig. 10. Illustration of relative error in a measurement of natural gas flowrate, 

when using the GMDH polynomial model of the flowrate correction factor 

(Fig. 7 and Table 8) instead of the precise calculation procedure (Table 1). 

 

From Fig. 10 it can be seen that the GMDH correction factor 

decreases the non-compensated relative error (Fig. 8) roughly 

by the order of magnitude in the entire pressure/temperature 

range. The error performance is somewhat degraded at higher 

pressures and at lower temperatures but the absolute value of 

the relative error never exceeds 0.064%. Similar results are 

obtained for the remaining gas mixtures from Table G.1 [6] 

and for various randomly generated gas compositions. Almost 

identical error performance characteristics are obtained when 

applying the same GMDH model for the correction of the JT 

effect in the measurements using orifice plates with corner, 

flange or D&D/2 taps [3] since the corresponding differences 

in the calculated temperature drops are negligible for the same 

natural gas flowing under the same operating conditions. 

The non-compensated flowrate error varies by varying the 

natural gas composition due to the corresponding variation of 
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the JT coefficient. For a fixed natural gas mixture the absolute 

value of a JT coefficient [2][5] is increasing by decreasing the 

temperature, thus increasing the temperature drop, Eq. (1), 

which increases the uncertainty of the calculated density of a 

natural gas and the uncertainty of the flowrate, as well. Also, 

the increase of the differential pressure and the decrease of the 

diameter ratio are increasing the pressure loss, Eq. (2), thus 

amplifying the temperature change, Eq. (1), and consequently 

the flowrate error. 

The flowrate error (Fig. 8) occurs when measuring the 

temperature downstream of the orifice plate and when 

assuming the same temperature upstream of the orifice plate 

[1]. The procedure for the precise compensation of a 

temperature drop effect (Table 1) eliminates the corresponding 

flowrate error completely but it needs double calculation of 

both the flowrate and the properties of a natural gas and is 

therefore computationally intensive and time consuming and 

may be unacceptable for low-computing power measurement 

systems. The above described correction procedure performs a 

simple scaling of the flowrate, calculated at “downstream 

conditions” [1], by the correction polynomial (Table 8) and is 

easy to calculate and to implement in software. The correction 

procedure slightly increases the calculation time of a common 

procedure [1] but it decreases the non-compensated flowrate 

error, due to the temperature drop, by one order of magnitude 

(Figs. 8 and 10). Hence, it makes the error negligible with an 

acceptable degradation of the calculation time. 

The low-complexity GMDH polynomial is generated by 

optimizing the RRSE and the ET using the learning and the 

validation data samples uniformly distributed in the entire 

application space and, consequently, it approximates the 

correction factor more accurately in subspaces with lower 

non-linearity. The correction error could be further reduced by 

representing the non-linear regions of the correction factor by 

a larger number of training and validation data samples, 

throughout the GMDH model learning, but it is hard to 

construct such a data sampling in a high dimensional space. 

The CE measure proves to be very efficient in tailoring the 

model for real time system as it optimizes the model with 

respect to the approximation error and the complexity.  The 

obtained model decreases the computational complexity of the 

original procedure significantly while preserving reasonable 

approximation accuracy and is therefore applicable in low-

computing-power systems.  

Most likely, the obtained model (see Fig. 7 and Table 8) is 

not the best of all possible GMDH models because the 

complete search is unfeasible due to the huge number of 

possible models at higher layers. But, unlike RRSE measure, 

Eq. (11), the CE measure, Eq. (12), forces the GMDH 

algorithm to decrease the error while controlling the increase 

of ET and generally discovers more favorable solution with 

respect to both parameters.  

 

8.   Conclusions 

 

The GMDH surrogate of a computationally intensive 

procedure for the compensation of the flowrate error caused 

by the JT expansion effect is derived using the compound 

squared relative error measure of the accuracy and the ET 

(complexity) of the model. First the complete set of input 

parameters for the calculation of the natural gas flowrate is 

specified (Table 5) and the corresponding training and 

validation data sets are generated. The parameters are then 

aligned according to their impact on the approximation 

accuracy of the model (Fig. 3). The optimum total number of 

representative input parameters is established by searching for 

the parameters which are producing the minimum CE of the 

model (Fig. 4 and Table 7). Finally, the acceptable model is 

derived by minimizing the CE, Eq. (12), and by satisfying the 

predefined thresholds for the RRSE and the ET. 

The derived surrogate model of the correction factor enables 

direct compensation of the flowrate error caused by the JT 

effect. Significantly reduced ET and reasonable accuracy 

make the surrogate model executable in real-time by low-

computing-power microcomputer. The same model can be 

used for the compensation of temperature drop effect when 

measuring the flow rate of the natural gas by using orifice 

plates with corner-, flange- or D and D/2-taps [3], where the 

natural gas can be specified either by the composition [7] or 

by the physical properties [8].  
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